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ENERGY MANAGEMENT DURING THE
SPACE SHUTTLE TRANSITION

Robert . Stengel
Charles Stark Draper Laboratory

Massachusetts Institute of Technology

Cambridge, Massachusetis

ABSTRACT

An approach to calculating optimal, gliding
flight paths of the type associated with the space
shuttle's transition from entry to cruising flight is
presented. Kinetic energy and total energy (per
unit weight) replace velocity and {ime in the dynamic
equations, reducing the dimension and eomplexity
of the problem. The capability for treating integral
and terminal penalties (as well as Mach number
effects) is retained in the numerical optimization;
hence, stability and contrel boundaries can be ob-
served as trajectories to the desired final energy,
flight path angle, and range are determined. Numer-
ical results show that the"jump" to the "front-side
of the L/D curve' need not be made until the end
of the transition and that the dynamic model pro-
vides a conservative range estimate. Alternatives
for real-time trajectory control are discussed,

INTRODUC TION

The space shuttle orbiter's return from orbit
is marked by three mission phases whose flight
dynamics and constraints are fundamentally dif-
ferent. (Fig.1.) The entry phase occurs at angles
of attack (@) greater than that required for max-
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Figure 1. Flight phases during the return from
orbit,

imum lift-drag ratio, L{D, (the "backside of the
L/D curve") in order to meet heating constraints,
This phase passes through a region of radioc
frequency ''blackout" during which time ground-
basednavigational aids cannot be used; itterminates
at mesospheric altitude and supersonic velocity,
Large range and cross-range maneuvers can be
made during the entry phase, The entry phase is
matched to the terminal area and landing phase by
a transition phase, which further decelerates the
vehicle to subsonic velocity as altitude decreases
to approximately 40,000 ft. Angle of attack shifts
from the backside to the froniside of the L/D curve
during transition, the principal constrainis being
stability and centrel boundaries,” Ranging control
can be continued during this phase, although it could
be necessary to limit or suspend ranging in flight
regions where attitude conirel is particularly diffi-
cult. The shuttle's terminal areaand landing phase
will be similar to that of standard aircraft opera-
tions, with the exception that provisions must be
made for unpowered flight.

Trajectory and guidance computations for the
transition phase are complicated by the rapidly
changing flight environment and by the interdepen-
dence of state and control. Mach number, angle-of-
attack, and air-density effects are strong, and their
ranges of values on any given transition trajectory
are large. Whether it is used as an in-line part of
an explicit guidance law or as a source of a priori
nominal profiles for a simplified guidance scheme,
afast, reliable means of generating transition flight
paths and control histories which meet engineering
and navigational requirements will be useful,

A numerical approach to defining ontimal
gliding trajectoriesis presented inthis paper. The
optimization problem is made easier by simplifying
the model of flight dynamics and by substitution of
variables. This allows the number of state and
adjoint variables to be iniegrated to be reduced.
Velocity is replaced by kinetic energy, and total
energy takes the place of time as the independent
variable. The requirement for descending to a
particular altitude with a given velocity allows the
open end-time of the original problem to be replaced



by fixed terminal energy, eliminating the additional
complexity of end-point adjustment. A steepest-
descent algorithm with near-optimal step-sizing
rapidly minimizes a cost function consisting of
integral and terminal penalties. The integral penal-
ties provide phugoid damping (minimizing dynamie
pressure- and load factor peaks) and assure that o
remains within stability and contrel boundaries,
The terminal penalties (which are soft constraints)
force the final state into the desired region. Asis

to be expected with any iterative solution of equa-

tions, the speed of convergence is greatly affected
by the choice of initial contrel profile; however, it
appears that a small family of starting control
histories will initiate convergence 1o an acceptable
flight path within a few iterations (i.e., less than
half a dozen),

DEVELOPMENT OF EQUATIONS

Transformation of Variables

The equations of motion for the two-dimen-
sional trajectories considered here makeuse of the
flat-earth approximations, on the basis that glide
range and altitude changes during the transition
maneuver are small compared to the earth's radius
and that velocityis decidedly sub-orbital. With the
further assumption of an air-density profile, ¢ (H},
which is exponential with altitude, the equations for
velocity magnitude (V), flight path angle (¥), altitude
(H), and range (R) are

7 = -cpke PRy - gsiny (1
y = che'BH v/2 - (g/V)cosy @
1 = Vsiny (3
k=

V cos vy {4

where £ is the inverse scale height of the atmo-
sphere, g is the average gravitational constant in
the transition altitude interval, and the constant,
k, combines reference area (3), vehicle mass (m),
and reference air density (Po)as

k = — (5

Angle of attack (@), is taken as the control
variable; it enters the equations through the lift-
and drag coefficients (C and Cp), which are also
arbitrary functions of Mach number (M).

The kinetic energy per unit weight is
K = vZ/2g, 6

and it is seen that K can replace V in Eq. (1) to
(4). Differentiating Eq. (6) with respect to time,

K = VV/g 4

and the revised set of equations is

R = -cpke g’ /2 g0t/ 2 siny @
¥ o= ¢ ke PHg /212 - (g/2k) /2 cosy (9
H = 2gk) 2 siny (10
R - (2gK}l/2 cos ¥y | (11

Equations (8) to (11) have no explicit depen-
dence on time; therefore, time can be replaced as
the independent variable, and the number of equa-
tions can be reduced by gne, Recent papers have
replaced time by altitude? and flight path angle? to
good effect, There is a potential difficulty in
choosing K, ¥, or H to be the independent variable,
as there is no assurance that these quantities will
decrease monotonically with time. In particular,
aphugoid oscillation innear-horizontal flight causes
the time-rate-of-change of all these variables to
change sign, As a consequence, it becomes neces-
sary to transit singular points, and the control
profile becomes multi-valued, Thereisa combina-
tionof K and H whichis guaranteed to be monotonic
in gliding flight (although not in powered flight?®).
It is, of course, the total energy per unit weight,
or specific total energy,

E = K+H, (12

which is always dissipated by the effect of aerody-
namic drag. This is easily seen, because

E = K+H, (13a
and Eq. {8) and (10) show that
E = -Cp ke BHp o3 1/2 (13b

Fquation (13b) is always less than zero. The
derivative

d()/dE = [d()/at) L dE/dt] = () (14

i thus well-behaved everywhere on the gliding path,
and the differential equation for either K or H can
be eliminated using Eq. (12) and (14), Choosing H
tobe eliminated, the differential equations of motion
using specific total energy (E) as the independent
variable become

K’ =1+ simy/Cpp (15

¥! = {-C + cosy/ W)2C K (16

R’ = -cosy/Ch B (17
where

po= ke PHg {18



and H is determined from Eq. (12). u can also be
written as gS/W, i.e., the dynamic pressure (g}
divided by wing loading (W/3).

Expressing the vehicle dynamics in terms of
total energy has several advantages in addition to
eliminating a differential equation. The time to
execute the transition maneuveris inconsequential;
given a set of initial conditions on V, ¥, H, and R,
the maneuver must be defined to match final condi-
tions on the same variables, subject to constraints
which are functions of the state and control. V and
H are combined in E; hence, the running interval
[E_, Ef] is fixed and well-defined, Control histories
and gains are then computed as functions of energy
rather than time-to-go. Thisintroduces a feedback
relationship between the vehicle's state and control,
anditeliminates the problem of running out of gains
andnominal control profile if fime-to-gois exceeded
before the terminal flight condition is reached (for
information, time-to-go can be calculated using Eq.
(L3b), since 6t = dE/ E}. A final advantage is that
the partial derivatives necessary to describe per-
turbations about a given trajectory are simpler and
fewer in number (see following sections),

Equations (6}, (12} and (15~17) correspond
exactly to Eq. {1-4); further simplifications can be
made for transition trajectories, It is observed
that flight path angle rates are negligible, i,e., that
load factor is close to 1 during the transition,!
Assuming that ¥ = 0 leads to ¥' = 0. The algebraic
solutien to Eq. (16) is then

cosyY = CL.u

and the number of equations to be integrated is
reduced to 2. Alternatively, the flight path angle
canbe assumed small during the transition,! leading
to a third-order system with cogs ¥ =1 and sin ¥ =
Y. Both simplifications are examined further, and
the optimization continues with the latter approxi-
mation.

Second- and Third-Order Dynamic Models

With negligible ¥ rates, Eq. (19) applies, and
the dynamical equations (for ¥ £ 0) are
1/2
S "

1=F(1-CL#) (20

Kf

R'=-C (21

I
L/“D

The simplicity of the range equation provides
a well-known result for gliding flight, namely that
glide range between two energy-states is maximized
by flying at L/D_ . This is easily seen, since

E

¢
R - S (-C_/C)dE , E_
E

o

The integral is maximized when the integrand
isminimized, which occurs at L./D ax: This result
depends not on small ¥ but on negilglble Y, and it
allows CL. and CD to be functions of M as well as
e, :

>Ef (22

« Inordertostudy optimal paths, itisnecessary
to find the sensitivity of the state equations to small
variationsinK, R, anda, Neglecting CL. and CDM

the three non-zero partial derivatives are

(19

2 2.
) [ wCpC €y - (- CluCy
3K | . 1 o o (23
3o (Cp (1- C, 2u2) 172
p H LH
SRY i CDCI_q' CLCDQ" (24
do CD2 '
- 2 2
A S e TR {
T 2 2172 (25
3K Cy, (1- Cy %)
where
Bp = plg+1/K ("6

These derivatives are well-posed for smail
perturbations about gliding flight paths, with one
exception; the denominator of Eq. (23) and Eq. (25)
can lead to difficulty. The denominator is actually
sin ¥, hence the partials of K' become infinite in
horizontal flight, When CL,u > 1, Eq. {19) is no
longer walid, and the denominator becomes the
square rool of a negative number. Tt is likely that
both difficulties will be encountered in a numerical
optimization — if not on the optimal path, on a
previousiteration. For these reasons, the second-
order model will not be pursued; however, it is
interesting to note that for planar, gliding trajec-
tories without integral or terminal-range penalties,
the equations required for optimization (see next
section) are scalar, With aterminal-range penalty,
the range adjoint variable is non-zero but constant,
leaving a single differential equation to be solved
for the kinetic energy adjoint variable and a two-
component control correction. ‘The conventional
assumption of a "parabolic drag polar' (C; linear
in @, Cp quadratic in Cp} simplifies Eq.Lt20-25)
further, although the assumption is valid only for
subsonic flight.

In the second approximation, the rate-of-
change of flight path angle is not limited, but ¥ is
assumed small. Equations (15-17) can be expressed
as the vector equation .

x’=1(x, o) {27
where Xy = K, xz =%, Xg = R, and
t'1 =1+ lecDu (28
fz = (_CL + _1;p)f2CDx1 (29
f3 = -1/CDu (30

Equation (30) shows that Cpk, the drag decel-
eration, must be minimized to maximize range.
Again assuming that CL and CDM are negligible,

T of the 12 partial derivatives with respect to x

and @ are non-zero. They are



= ' {31
£, = -xp(B + 1/x)/CpH 3
X
1
f1 = 1/CpH 32
X
2
2
fzx = [C-2+Bx)u] J2cx, (33
1
f =
3, (8 +1/x)/Chp (34
1
2 :
B, =%l /I Chp ' (35
o &
t, =[-Cp *Cp (- 1/ Cpl /2Cpx, 36
o @ o
f, = C, /C.2
3 D '~p ¥ 37
24 @

The principal virtues of the small-angle ap-
proximation are computational, in that the number
of partial derivatives is reduced, and there are no
trigenometric functions or square roots to be evalu-
ated. These attributes, plus the coincidence of
similar termsin Eq, {28-37), make the third-order
model hardly more complex than the second-order
model, With range open, the state dimension is
two. A terminal-range penalty increases the state
dimension to 3, but the range adjoint variable is
again constant, leaving two adjoint variables to be
evaluated by numerical integration.

Optimization Using the Third-Order Model

It is desired to minimize a cost function
consisting of terminal and integral penalties, sub-
ject to the dynamic constraint of Eq. (27). The
augmented cost function, J, for fixed end condition
is T
3= xexp Qxe-Xp)

E

f
{2t @ AL 03] VB B> By 68

Eo
where @ is a constant, diagonal matrix weighting
the squared-error between achieved- and desired
final state, # is a penalty function whose integral
must be minimized, and A is the vector adjoint of
x. The state vector is a function of E through Eq.

{27}, while A(E) is found from _

Y = T . T

with

ME) = 2Q (x¢ - xp) (40

. Having obtained a trajectory from Eq. (27)
with an initial control profile,a{E), the angle-of-at-
tack history is improved on succeeding iterations
by the perturbation

bo(E) = - etz +2T1 )T (41

where € is a near-optimal step-size obtained by a
one-dimensional search of J(¢), Aquadratic approx-
imation, J{€), is found by evaluating the costs of
three trajectories with control profiles« . (E), @ olB)
+ €560E), and a (E) + 2¢,6a(E). The iteration is
completecl by choosmg the ¢ which minimizes the
variation of J with respect to €. Additional test
trajectories are computed if it is apparent that a
significant improvement can be made, e.g,, if

e (min J) > 2¢ .
o

Although tierminal-range corrections are
most readily made by varying a during the early
portion of the trajectory, itis found thatno combina-
tion of penalty weights provides this obvious control
correction, Equation (41) tendstoreach its largest
values in the latter portion of the flight. A simple
artifice which retains the essential ingredients of
the steepest-descent algorithm overcomes the
problem, On the first one or two iterations
(depending onterminal-range error), the step-size,
€, is multiplied by a ramp function, which equals
1l at E. and 0 at E;i hence; the corrections are
attenu c1e.ea:i as theterminal point is approached. The
ramp weighting allows large changes in range with
little change in terminal V and ¥, which are pri-
marily determined by the control profile in the
latter portion of the flight,

The integral penalty function &) contains
terms which enforce control boundaries and which
introduce {rajectory damping. Angle -of- attack
boundaries imposed by elevator “control power"
and embedded regions of instability which are
functions of Mach number have been considered
previously.! In the present paper, the g-penalty

is simply
) 2
c,lo- o) o< a,
2, ® 0 , ey safag (42
2
col @- ay) .o oy

with @, and @, chosen as 3° and 50° respectively
(c; and co must be negative for the energy integral
of #Z to be positive). The upper limit roughly
corresponds to the highest hypersonic trim angle-
of-attack likely tobe obtained for a delta-wing space
shuttle with negative-maximum elevon deflection,
The trim limit is sensitive to cenier-of-gravity
location and could be sharply reduced by aft move-
ment of the c.g,; it also decreases with decreasing
M. The 3°-limit is arbitrarily chosen to maintain
positive load factor. £y is academic for the numer-
ical results which follow, It comes into play during
numericaliteration, butnone of the optimal profiles
presented here follow a control boundary.

Phugoid oscillation, which results from a
lightly damped interchange of kinetic- and potential
energy,® leads to load factor and dynamic pressure



overshoots, as well as 7V and pitch attitude {(g)
oscillation, The oscillationis forced by the continu-
ally changing flight condition; it can be reduced only
by avarying @(which may occur somewhat automati-
cally in planar cases by redefining the control
variable to be #8=7-@, as in Ref. 6). Penalties on
load factor, ¥, or dynamic pressure can be employed
to reduce the phugoid oscillation.

Load factor and ¥ penalties are closely re-
lated. The load factor is a function of both Cy and
Cp, while {from Eq. {2)), ¥is a function only of
Cy,. Analogously, a penalty on ¥'2 using Eq. (29)
can be formed. The penalty has been used with
some success, principally because it is a function
of both the state and the control.

Dynamic pressure (q) is less successful in
providing trajectory damping, because it is an
implicit function of the control., The dynamic
pressure can be expressed as

2

1
q= =V
2

(43

ngl.

and it is clear that q is an explicit function of the
state only. Similar difficulties with state constraints
can be solved by differentiating the constraint with
respect to the independent variable until the contrel
appears.’ For dynamic pressure, a single differen-
tiation is sufficient, as

n

q q e xll + P.xl)

(44

qlt 8x + DEy- %]

and f) is a function of @ through Cp (Eq. (28)).
Equation (44) shows that the q' penalty is primarily
a kinetic energy rate (x)) penalty which is weighted
by air density. The y' penalty damps angular
orientation of the velocity vector, while the q'
penalty provides kinetic energy damping. The latter
has been found to be more effective, and the trajec-
tory damping penalty function used here is

:&2=c3q \ cg<0, 45

with the partial derivatives

£2x = 2c3qq'{ {p + 1")(1)[ (Bx1+ 1) fl' Bxll
1

+lea-n+ ey 1) (46

1
- + (47
= 2¢qqq {sx1+1) f,

Ly
o o

APPLICATION TO SPACE SHUTTLE TRANSITION

The numerical results presented in this sec-
tion demonstrate a variety of planar transition
trajectories for a délta-winged configuration of the

space shuttle orbiter.® The vehicle has a maximum

hyperscnic L/D of 2.1, which oceurs at @ = 13.8°,
and a subsonic L{Dy, o, of 4.3 (@ = 8.4°); the wing
loading is 49 psf. T?ixe nominal starting point for
these trajectories occurs at an altitude of 150,000
ft and a velocity of 8,000 fps, corresponding to a
specific total energy of 1,15x108 ft; the nominal
terminal point at 40,000 ft altitude and 870 fps
velocity (M = .9} yields a specific total energy of
5.18x104 ft. At the beginning of the transition
trajectory, kinetic energy makes the larger contri-
bution to total energy, whereas potential energy is
the larger contributor at the end point, Flight is
nominally horizontal at the start and ends with a
flight path angle of -18°, which is representative
of the equilibrium angle during the terminal area
glide,

These results show the detailed effects of
range control, a comparison of the flat-earthtrajec-
tories with round-earth paths, and variations due
to changes in initial conditions, A convergence
example is presented with a discussion of the
feasibility of "real-time" optimization. It will be
shown that the "jump" to the "front-side of the L{D
curve' need not be made until the very end of the
transition, that the dynamic model provides a con-
servative range estimate, and that the present
formulation suggests several alternatives for real-
time trajectory control.

Trajectories to a Given Range

This section concentrates on the numerical
results achieved for five terminal-ranges, which
are bounded by the L/D ax case at the upper end
and by a maximum load tactor of 3 "g' s"(approxi-
mate) at the lower end. Terminal range varies from
250 nmi to 402 nmi for these cases, all of which
have the same initial and final specific energy.
The 350 nmi case closely approximates the range-
open optimum. It will be seen that the phugeoid
oscillation is not entirely eliminated by the dynamic
pressure-rate penalty — a point of diminishing
returns was inevitably reached in the iterative
process, Because the phugoid is a natural mode
of response, it is put to good use maiching initial
and final conditions, Furthermore, with the excep-
tion of the L..-"Dmax case, the maximum dynamic
pressure peaks never exceed 234 psf, hardly more
than the 180 psf of the nominal terminal condition
and not a constraining factor for structure or
control,

These trajectories are summarized in Fig.
2, which presents the variation of wvelocity with
altitude, The H-V profile is a direct indication of
the energy distribution on the transition flight paths.
While flight at 1./Dp, 4% is generally considered to
provide a smooth dynamic environment, it evidences
the largest phugoid oscillations and dynamic over-
pressures of this section, largely due to the initial
flight condition. The initial conditionis not matched
to an equilibrium glide, and the vehicle falls into a
maximum q of 425 psf. A brief pitch-up at the
beginning of the transition phase absorbs the oscilla-
tion and provides a flight path with a maximum q
of. 234 psf, losing 7 nmi of range in the process.
The 402 nmi range of the L/Dp,,, case could not
be improved upen in the numerical optimization.
Comparison of the five trajectory profiles with the
constant-q curves plotted in Fig. 2 illustrates the
general result that increasing range corresponds
to increasing q, while the intersections with con-
stant-E curves show the corresponding result that
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Figure 2. Altitude-velocity profiles fer trajectories
to several terminal ranges, Initial-andfinal specific
energies are fixed for these 5 cases., Phugoid
oscillations cause dynamic pressure peaks, Range
increases correspond to higher dynamic pressure.

{ignoring the phugoid mode) long-range trajectories
have proportionately higher kinetic energy at a given
gspecific energy level. One sees evidence of the
"zoom-climb/zoom-dive" and maximum-E seg-
ments which arise from analytic solutions for sim-
ilar cases,? although the effects of finite ¥ rate-of-
change and fixed terminal range cannot be ignored.
The H-V trajectories converge to similar profiles
near the end point, suggesting that the optimal
terminal {ransition maneuvers are relatively
independent of range,

That terminal state and control histories are
similar is verified by Fig. 3,4, 6and 7. TheL/D__
case is not constrained to a particular terminal
flight condition (other than identical specific
energy); hence the terminal velocityis 50 fps lower
and the altitude is 1300 ft higher than nominal,
The maximum terminal variation from nominal for
the remaining four cases is less than 1/6 of these
numbers, while the average variation is consider-
ably less.

Figure 3, which presenis wand ¢ as functicns
of E, illustrates the large initial separation in angles
for differing terminal-ranges and the convergence

on similar profiles as the end point comes near,

Notice inparticular that «is virtually always greater
than the a required for L/D . {Fig. (3a2)) and that
abrupt changes in 4 (Fig. 3(b} occur near E = i0%
ft, corresponding to an M .of about 1.2 and altitudes
of 75,000 - 80,000 ft, The phugoid oscillation is
generally apparent in 8 bui not @; because Y= 8 -
a, it is seen in flight path angle as well. The two
shortest range cases require high o at the start of
transition to dissipate specific energy and shorten
the range, Figure 4(b} shows that maximum load
factors are associated with the range adjustment
early in the transition, are close to 1 for a large

portion of this mission phase, and show an increase

a'ssociated with the terminal pull-up to the desired
flight path angle ( ¥ reaches a minimum of -21,3°).
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as funetions of the specific energy (E) for several
terminal ranges, & remains on the "back side of
the L/D curve" for all cases,
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Figure 4. Dynamic pressure {q) and load factor
("lg's") as functions of E for several terminal
ranges. The greatest q excursions occur for fll_ght
at L/Dp, .4 due to non-equilibrium starting
conditions.
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Figure 6. Lift-drag ratio (L/D) and drag coefficient
{Cp) as functions of E for several terminal ranges.
Drag modulation is seen to be the principal means
of range adjustment.

The qualitative relationship between specific
energy and time is simple: the logarithm of E
decreases nearly linearly with time, and the approx-
imate slopeis a function of the final range. Figure
5 illusirates the precise relationship, which contains
some oscillation as well as a small mean curvature.

Figure 6 shows that the principal means of
adjusting range is in modulation of the drag coeffi-
cient {Cp). The lift-drag ratio changes with Cp
and is instrumental in maintaining a smooth flight

path. To this extent, the shape of the Cp profile
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Figure 7. Angle of attack (@) vs. Mach number (M}
for several terminal ranges., Siability boundaries
are typical,

is determined by L/D modulation; however, the

. average magnitude of Cp is a more significant

function of desired final range than is L{D.

A plot of ¢vs., M (Fig. 7) again shows that
there is no important requirement for flight on the
front side of the L/D curve. Flight at lower «
requires higher g, a condition to be avoided if
dynamic pressure peaks are a major concern, As
shown previously,! the final reduction in o to the
trim-glide angle occurs at nearly constant, subsonic
M. Mach number actually decreases to .85 before
taking its final value of .9, The -M plot finds its
greatest use in defining the stability and control
environment, as both parameters have strong ef-
fects onvehicle aerodynamics, Typical boundaries
along which short-period and Dutich roll modes of
longitudinal and lateral-directional angular motion 3
become statically unstable are superimposedon Fig,
7. Thewa-M profiles are shown to avoid longitudinal
instability, but flight in a region of lateral-direc-
tional instability is unavoidable for M above 2 to
3. Stability augmentation is therefore required for
the lateral-directional mode.

Errors Due to the Simplified Dynamic Model

Elimination of the round-earth terms in the
equations of motion and the small ¥ assumption lead
toerrors in trajectory computation, Ignoring cen-
trifugal force effectively reduces the lift on the
vehicle, causing pessimistic estimates of range (too
short) and dynamic pressure (too high), Gravita-
tional accelerationis overestimated at the beginning
of the trajectory and underestimated at the end;
however, the altitude span is not large, and this
simplification has small effect, Range is overesti-
mated by neglecting the earth's curvature. The Y
assumption leads to an overestimate of gravitational
effects on K' and ¥', while the range calculation is
increased by assuming a horizontal velocity vector,

The over-riding effect is the lack of centrif-
ugal force. A comparison of the simplified calcula-
tions with a round-earth model which neglects
oblateness and rotational effects shows range



increases of 3% to 5% for ranges of 250 to 402 nini
for the latter, while maximum dynamic pressure
is reduced from 0% to 16%. Both errors are
conservative, as the actual trajectory is flown with
lighter aerodynamic loads, and the terminal-range
is reached with excess specific energy. Restoring
centrifugal force to the equations would correct the
principal error and cause small additional
complexity. A pragmatic approach would be to bias
the target range,

Initial Condition Effects

Two kinds of initial condition effects are
considered: those which are accounted for by
recomputation of the optimal control and those
which arenot. In both cases the control is a function
of E; hence, there is feedback of altitude and
velocity, and terminal V, ¥, and H are close to the
desired values. The primary differenceis whether
or not range is controlled, A This difference is
reflected in the early control history, and, there-
fore, in the most significant q peak.

A variation in initial velocity with range
controlled to 350 nmi has counter-intuitive effects
on load factor and dynamic pressure, Variations
of +500 fps have small effect on maximum load
factor, but the resultis anincrease for both positive
and negative variations. The negative variation
causes a substantial increase in maximum g, while
the positive variation shows reduced q. These
results can be attributed to the phase of the phugoid
oscillation induced by range control. Lower initial
velocity leads to lower E,, causing the vehicle to
ily at lower o to stretch the range. As shown by
Fig. 8, the loss of lift causes H to drop and q to

rise, The opposite is true when there is excess
energy.
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Figure 8, The effect of initial velocity on flight

paths to 350 nmi final range, Low initial velocity
causes descent to lower altitude, increasing dynamic
pressure,

Flight path angle variation {with range con-
trolled) has an equally interesting effect. Raising
the initial ¥ provides ballistic lengthening of the
trajectory. Angle of attack increases to shorten
the range, and maximum q is reduced.

Results obtained with initial state variations
and a single near-optimala-E profile for 350 nmi
final range are summarized in Table I. The effects
of the initial variations are computed for the round-
earth model, The table shows that final V and ¥
are virtually insensitive to the initial variations,
and Hy sensitivity is small, = Scheduling o as a
function of E (and thus H and V) provides effective
closed-loop control of the terminal altitude and
velocity vector., The same cannot be said for final
range, which shows small changes with initial alti-
tude variation, moderate change with ¥, and large
change with V (which, in this case, represents a
large change in Eg). The increase in maximum
load factor is greatest with the -Y variation, and
the +¥ variation provides a 40% increase in maximum
q.

a
VI' Y Hl-. RI" Ypnaxe Load ED, -
Casge fps  deg It nmi psf factor fEci0Q

Nominal (Flat-Earih} 868 -18.2 40052 350,1 171
Nomina! (Round-Earth) 854 -16.5 <0458 366, 152

.47
46

L1
L6

1 1

1. 1
+500 fps 85¢ -16.5 40449 405.6 120 1,44 1,29
-500 fps 854 -16,5 40465 327.9 157 1,48 1,04
+3° 854 -16.5 40464 383,94 211 1,59 1,16
-3* 855 -18.7 40569 348.1 201 1,66 1,16
+5000 f 853 -16.5 40466 368.7 172 1.36 1.1

1.64 1,15

~5000 rt 85¢ -18,5% 40468 363,1 182

* Excluding end points

Table I. Effects of initial condition variations on

a 350 nmi transition trajectory.

Real-Time Applications

The alternatives available for "real-time"
optimal trajectory control fall into three catego-
ries: on-line solution of the two-point boundary-
value problem, linearization about a nominal flight
path to obtain optimal feedback gains, and dynamic
programming. The present investigation was moti-
vated by the first alternative but could be useful
for the remaining two alternatives as well. In any
case, a practical guidance scheme must include a
cross-ranging capability, whichisnot studied here.

Solving the two-point boundary value problem,
e,g., the trajectory and optimization equations of-
fered in this paper, is a formidable task even with
a ground-based general purpose computer; how-
ever, the possibility shouldnot be dismissed without
study, for the flexibility that this approach offers
is extreme. It is reasonable to assume that only
one or two full solutions would be required during
the flight as ameans of improving the nominal flight
path and control for a perturbation guidance law,
Nevertheless, integrations along the flight path
must be fast, and the process must converge reli-
ably within a few iterations,

The program which computed this paper's
numerical results was not "streamlined" for use
in a flight computer, but it gives some indication
of what might be expected in a real-t{ime environ-
ment. Using avariable-energyintegration step and
single-precision arithmetic, about 100 Runge-Kutta
steps were used for each state and adjoint integra-



tion. Near-optimal control-step adjustment
required the evaluation of three state histories and
one adjoint history for each iteration. Fast conver-
gence is dependent on taking anear-optimal control
step oneach iteration, and the size of the best step
is not easily predicted from the previous iteration.
There is no question that starting control profiles,
control steps, penalty weights, and adjustment rules
must be chosen carefully for fast, reliable conver-
gence; however, convergence of the sort illustrated
in Table II has been obtained for anumber of cases.
The starting profile had V, ¥, and R errors of 35
fps, 2.7°, and 16 nmi, with Qma§ = 181 psf; after

two iterations, the errors were fps, .3°%, and .04
nmi, with =157 psf.
’ Ymax P
Veloaity ¥ Range q' Total Step
Iteration coslt cost cost cost cost < &, 40 Eize
0 L .4 o8, 8.5 1002. 4645, —-—
1 8.5 .4 L0136+ 12,6 239, 42,
2 .02 004 L0606 3.66 368 Bat
3 J00¢ . 007 0068 3.87 388 .68 6.4
Table 1. Convergence example for 350 nmi final
range. The inner product, <3¢, s>, iS a measure

of the proximity to an extremal path,

The energy formulation is amenable to neigh-
boring-extremal linearization, which allows op-
timal feedback gains to be computed for control
about a nominal path.”? The gains for K{(E), Y (E),
and R(E) are obtained by evaluating a 3x3 matrix
Riccati equation. Although the dimension of this
equation is net large, there are a large number of
coefficients to be evaluated, many of which aremore
complex than the coefficients of the original non-
linear equations; hence, the ''ideal' combination of
computing an optimal trajectory onboard followed
by calculation of optimal feedback gains appears
impractical. Pre-computed gains scheduled against
specific energy would be a better solution, espe-
cially since@ should remain above thea for L/Dy, .,
during the largest part of the transition.

A family of optimal transition trajectories
constitutes an autenomous field of extremals which
can be used for nonlinear feedback control, The
theory of dynamie programming!? proves that there
is aunique optimal control variable associated with
each pointin the extremal field, in thiscase defined
by K (or V), 7, R and E; hence, acanbe pre-computed
as an optimal function of these variables and stiored
within the flight computer. A table-lookup algorithm
then provides the nonlinear feedback control law.
The present results suggest that a two - parameter
table, in which the guidance command, @, is a
function only of E and range-to-go (R4 = R; - R).
may be sufficient,

Figure 9 illustrates a planar guidance concept
in which oeG(E, RGO) is supplemented by dynamic
pressure rate damping to make up for the missing

Gonlral
urlae

il b
Srmand] venitle

Fright
LControl .
Logic. Dynamics

1= <va =

Dynamic
Pressure
e

Figure 9. Block diagram of dynamic programming
approach to planar guidance (inner loops of flight
control system not shown). The guidance command,
0, is afunctionof specific energy (E) and range-to-
go (RGO).

state wvariables in the nonlinear function, The
dynamic pressure rate can be derived from Eq. (44}
and is, therefore, a funcition of K and ¥, The
Y-dependence can be eliminated by using Eq. (7)
and (i3b) instead of Eq. (28) to find fl, introducing
a requirement to measure V,

Figure 10 illustrates {(in perspective) the
guidance function, a(E,Rgo),which is derived {rom
the optimal trajectories presented in Fig, 2 to 7.
Choosing a to lie on the guidance surface results
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Figure i0. Guidance function, aG (E,RGO), for the
planar case.

in a near-optimal trajectory to the end-point, one
which yields the desired V, ¥, H, and R at the
beginning of terminal area maneuvering, while mini-
mizing dynamic pressure rate-of-change, The
"shadow" of the surface converges as the final range
is approached. Ranging control is effectively termi-
nafed in this example several nmi from the end point;
the surface becomes a line independent of Rgo in
order to provide a good match to the desired Vg,
Ve and Hf.

Table Tl presents some results of applying
the guidance function of Fig. 10 with several initial



Inttial Vi ¥ Hr' Rr' Unax Load
Conditions fps  deg Fi 3 Bl psf  fagtor
MNorninal 846 -15,9 40627 350.0 135 1,32
+500 fps 847  -16,0 40645  350.0 115 i.43
-500 (ps 845  -16,3 4057 349.9 180 1.82
+3° B4&  -16.0 40860  350.0 127 1,31
-3° 846  -15,9 40653  350.0 188 1.48
+5000 ft 846  -16,0 40858 350,00 138 - 1.32
-5000 {t 847 -16.0 40652  350.0 124 1.31

*Excluding end points

Table III. Trajectories to 350 nmi final range
using dynamic programming guidance function,

conditions. No trajectory damping is usedonthese
round-earth paths to a 350-nmi final range, End-
point convergence is seen to be very good, and
dynamic pressure- and load factor peaks (which
could be reduced with trajectory damping) are not
excessive.

CONCLUSIONS

The planar gliding path of a space shuttle
orbiter (or other aircraft) has been shown to be
readily described as a function of specific energy
rather than time. Transforming the independent
variable reduces the order of the trajectory
problem, and introducing kinetic energy as a state
variable yields further simplification, The change
of wvariables provides a fixed end-point for the
transition trajectory without restricting the final
time, a decided asset for flight path optimization.
As presented, the equations also are applicable to
terminal area maneuvering and landing approach
(although only the space shuttle's transition phase
hag been investigated); the equations could be ex-
tended to hypersonic entry with little difficulty.

Trajectory optimization by the steepest-
descent method has provided typical resulis for a
delta-wing orbiter configuration. The problem of
phugoid oscillation has been reduced by defining a
trajectory damping integral penalty function which
is quadraticin the rate-of-change of dynamic pres-
sure. The trajectories are ghown to occur almost
entirely on the "back side of the L/D curve,"”
avoiding the high dynamic pressures associated with
low C, .

The choice of specific energy as independent
variable is particularly fortunate for trajectory
control, in that optimal control profiles establish
anonlinear feedback relationship from altitude and
velocity to angle of attack. A family of optimal
trajectories forms a field of extremals suitable for
control via dynamic programming. The number of
profiles which arenecessary for real-time solution
is small, because o is a strong function of only two
variables. Extending the real-time control to 3-di-
mensional trajectories introduces a new control
variable (roll angle) and anew guidance parameter
(crossrange-to-go, orits equivalent). The specific
energy formulation and the dynamic programming

guidance function are expected to yield advantages
for this problem as well.
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